wxprofilers: Weather profiler instruments in Python¶
wxprofilers
provides tools for working with weather profiler
instruments such as wind lidars, microwave radiometers, and
radiosondes in Python. It converts data files into xarray objects, and can
derive or estimate weather variables such as wind speeds, PBL height,
and CAPE.
Installation¶
Installing with pip¶
After the requirements have been installed, wxprofilers
can be installed from Github using pip:
pip install git+https://github.com/ASRCsoft/wxprofilers.git
Wind Lidars¶
Functions for converting wind lidar files to xarray
datasets are
in the wxprofilers.convert
module.
import wxprofilers.convert as wxp
NYS Mesonet csv files¶
lidar = wxp.lidar_from_csv(rws='20170225_whole_radial_wind_data.csv',
scans='20170225_scan.xml',
wind='20170225_reconstruction_wind_data.csv')
Microwave Radiometers¶
Functions for converting microwave radiometer files to xarray
datasets are in the wxprofilers.convert
module.
import wxprofilers.convert as wxp
Radiometrics csv files¶
mwr = wxp.mwr_from_csv('2017-02-25_00-04-11_lv2.csv', resample='5T')
Radiosondes¶
Functions for converting radiosonde files to xarray
datasets are
in the wxprofilers.sonde
module.
import wxprofilers.sonde as sonde
NWS BUFR files¶
wxprofilers
includes the National Climatic Data Center (NCDC)’s
RRS Decoder to extract
text files from binary radiosonde BUFR files.
sonde.decode_rrs('94983_2005102412', '56')
Plotting¶
wxprofilers
adds a few plotting options in addition to xarray’s
excellent plotting capabilities.